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Multifractal properties of power-law time sequences: Application to rice piles
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We study the properties of time sequences extracted from a self-organized critical system, within the
framework of the mathematical multifractal analysis. To this end, we propose a fixed-mass algorithm, well
suited to deal with highly inhomogeneous one-dimensional multifractal measures. We find that the fixed-mass
~dual! spectrum of generalized dimensions depends on both the system sizeL and the lengthN of the sequence
considered, being stable, however, when these two parameters are kept fixed. A finite-size scaling relation is
proposed, allowing us to define a renormalized spectrum, independent of size effects. We interpret our results
as evidence of extremely long-range correlations induced in the sequence by the criticality of the system.
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I. INTRODUCTION

Self-organized criticality~SOC! has been the subject of
great deal of interest since its introduction by Bak, Tang, a
Wiesenfeld@1#. The main feature of SOC systems is th
they evolve, driven by means of an external force, into
critical state characterized by the absence of any chara
istic time or length scale. The resulting extremely long-ran
correlations show up through the peculiar ‘‘1/f ’’ power spec-
trum and the geometrical fractal structure. SOC behavior
been observed in many cellular automata models of sa
piles @1#, invasion percolation@2#, biological evolution@3#,
depinning in random media@4#, and also in some natura
systems, such as earthquakes@5#. Even though the first cel
lular automaton displaying SOC was conceived to repres
the dynamics of a sandpile@1#, the experimental evidenc
indicates that this is not actually the case: Real sandpiles
not in a self-organized critical state@6–8#. Recently, how-
ever, Fretteet al. @9# reported SOC behavior in a real gran
lar system, a one-dimensional rice pile. For grains of r
with a considerable aspect ratio, the pile behaves critica
this fact being accounted for by the increased friction, wh
is able to counterbalance the inertia effects predominan
real sandpiles.

In a subsequent paper, Christensenet al. @10# analyzed
the transport properties of individual grains inside a stati
ary rice pile. They measured thetransit timeof individually
colored grains of rice~tracers!, defined as the time necessa
for a grain to escape from the pile. Christensenet al. found
that the distribution of transit times follows a truncat
power-law form and that the average transport velocity of
grains diminishes as the system size increases. A cel
automaton model of a rice pile was proposed by Christen
et al. @10,11# ~the so-called Oslo model!, reproducing the
phenomenological behavior of the actual experiments.
guñá and Corral@12# have also suggested a theoretical s
nario for the Oslo model, based on a continuous-ti
random-walk model.

*Electronic address: romu@segovia.mit.edu
561063-651X/97/56~5!/5284~11!/$10.00
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The main results of the experiments and simulations
Christensenet al.can be expressed through a single functio
the probability distribution of transit timesP(T,L)dT, which
is defined as the probability of a given tracer spending a t
betweenT and T1dT inside a pile of linear sizeL. It was
found that

P~T,L !;H L2n, T,Ln

T2x, T.Ln,
~1.1!

wheren andx are certain characteristic exponents. The e
periments provided the valuesn51.5060.20 and
x52.4060.20, whereas the cellular automaton model re
dered the exponentsn51.3060.10 and x52.2260.10
@10,11#. This numerical evidence can be summarized in
finite-size scaling ansatz

P~T,L !5L2b f S T

LnD , ~1.2!

with

f ~x!5H const forx,1

x2x for x.1.
~1.3!

Given thatx.2 and provided that the probability distribu
tion is normalized, we have thatb5n and the average valu
of T is finite, ^T&;Ln ~see the Appendix!. The fact that
x,3 implies, however, that the second moment of the d
tribution is infinite,^T2&5`.

The finite-size scaling~1.2! compacts the experimenta
data into a useful relationship, which its turn allows one
extract valuable conclusions about the system. However,
actually quite obvious that it is possible to extract more
formation about the rice pile from thesequenceof transit
times, apart from its distribution function. In order to gain
different insight into the problem, we propose to consider
output of the experiment from a different point of view. L
us define the setS(N,L) as follows. Throw a tracer grain in
a stationary pile@13# of linear sizeL and measure the time
5284 © 1997 The American Physical Society
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56 5285MULTIFRACTAL PROPERTIES OF POWER-LAW TIME . . .
elapsed until it emerges outside within any avalanche. P
forming the same measurement forN different grains, con-
secutively thrown in the pile, we can construct the seque
S(N,L)5$Tn%n51, . . . ,N , whereTn is the time, measured in
units of added grains~the slow time scale@10#!, spent inside
the pile by thenth grain, in the sequence ofN consecutive
throws. The setS(N,L) can be interpreted as a discrete tim
sequence, assigning to the instantn51, . . . ,N the valueTn .
In Fig. 1 we have represented such a sequence for the tr
times recorded in the cellular automaton model of the r
pile described in Ref.@10#. The system size isL5100. Fig-
ure 1~a! shows a record of 90 000 transit times, whereas F
1~b! depicts the 5000 points closer to the center of Fig. 1~a!.
These plots show rather conclusively that not only is
distribution of transit times scale-free but also that theirse-
quenceis in some sense self-similar.

In this paper we will extract more information from th
Oslo rice-pile model, studying the sequence of transit tim
S(N,L). The method we have employed is that ofmultifrac-
tal analysis~which, on the other hand, is not new in the fie
of SOC @14,15#!. To this end, we have developed an alg
rithm particularly well suited to deal with one-dimension
measures, like the ones under consideration. When com
ing the multifractal spectrum of the sequenceS(N,L), we
observe that it shows considerable size effects: The spec
of generalized dimensionsD(q) ~to be defined later on! de-

FIG. 1. ~a! Sequence of transit times for 90 000 tracer grains
a computer simulation of the Oslo model; system sizeL5100. ~b!
Close-up of the central section of~a!.
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pends on the system sizeL and, even worse, on the sequen
length N. This fact seems to doom any effort to describe
single well-defined spectrum. However, by analyzingD(q)
in the limit q→`, we observe a power-law dependence onN
andL. Extending the scaling to the whole range ofq allows
us to define a ‘‘renormalized’’ spectrum, truly independe
of size effects. We interpret our results as an effect of
extremely-long-ranged correlations present in the seque
correlations induced by the criticality of the rice pile.

We have organized this paper as follows. In Sec. II
review the multifractal analysis of general mathemati
measures, stressing the difference between fixed-size
fixed-mass formalisms. In Sec. III we develop in particu
the formalism needed to deal with a discrete time seque
Section IV analyzes different synthetic uncorrelated rand
time sequences. First we check the accuracy of the algori
against sequences of known spectra. Then we study a po
law-distributed random signal, mimicking the real tran
time sequences. Section V deals with our final goal, ac
sequences of transit times from numerical simulations of
Oslo model. Finally, our conclusions are discussed
Sec. VI.

II. MULTIFRACTAL ANALYSIS: FIXED-SIZE
VS FIXED-MASS FORMALISM

Loosely speaking, we callmultifractals@16–18# the math-
ematical sets that can be decomposed into an infinite se
interwoven subfractals, labeled with an indexa, each of
them characterized by a different fractal dimensionf . The
collection of these dimensions form the so-calledmultifrac-
tal spectrum f(a) @19#. Strictly speaking, however, it is only
possible to assign mathematically meaningful multifrac
properties to ameasure~mathematical or physical! defined
over a given support@19#. A multifractal measure is com
pletely specified either by its multifractal spectrumf (a) or
by its spectrum of generalized dimensionsD(q). In this sec-
tion we review the main mathematical definitions and pro
erties of multifractal analysis.

A. General definitions

Following Ref.@19# ~see also@20#!, consider a normalized
measurem defined on a supportK,Rd, m(K)51. Let D be
an arbitrary partition ofK in nonintersecting elementsD i ,
that is,

K#ø
i

D i , D iùD j50” , iÞ j , ~2.1!

and letpi and« i , i 51, . . . ,N be the variables that represe
the weight factor and the size factor corresponding to
elementD i , respectively. We define the function

FD~q,t!5K (
i 51

N

pi
q« i

2tL , ~2.2!

whereq andt are any real numbers. The sum runs over
theN disconnected parts in which we decompose the sup
of the measure and the angular brackets stand for an ave
over different realizations of the measure. For any meas
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5286 56ROMUALDO PASTOR-SATORRAS
either deterministic or experimental~nondeterministic!, we
will assume that, for fine enough partitions, the functi
FD(q,t) collapses onto a single constant value, that is,

K (
i 51

N

pi
q« i

2tL 5const. ~2.3!

Expression~2.3! is an implicit equation, allowing one to de
terminet(q) for a givenq or, conversely,q(t) for a givent.
If we assume a partitionD in which « i5«5const, then the
size factor« can be factorized from the former expressio
yielding

K (
i 51

N~«!

pi
qL ;«t, ~2.4!

whereN(«) is the number of parts of size«, containing a
certain measurepi different from zero. From this last expres
sion we can compute the functiont(q) and thegeneralized
dimensions D(q) @21,22#, defined byD(q)5t(q)/(q21).
The f (a) spectrum is given by the Legendre transformat
f (a)5minq$qa2(q21)D(q)% @19,23#. This approach corre
sponds to the so-calledfixed-size multifractal formalism
~FSF!.

On the other hand, we can select a partitionD in which
pi5p5const, which yields

K (
i 51

N~p!

« i
2tL ;p2q, ~2.5!

where N(p) is the number of parts of measurep, with a
certain size« i different from zero. From this expression w
can calculate the functionq(t) and then, inverting it, com-
pute the spectrumD(q). This second approach correspon
to the so-calledfixed-mass multifractal formalism~FMF!.

Both the FSF and FMF are completely equivalent. In
der to stress this correspondence, we define the new pa
eters q* [2t and t* [2q and substitute them into Eq
~2.5!. Now both Eqs.~2.4! and~2.5! read the same, the onl
difference being the change of role ofpi and« i . The equiva-
lence between both formalisms is explicitly illustrated by t
identities

q* 52~q21!D~q!,

D* ~q* !5
q

11~q21!D~q!
, ~2.6!

with D* (q* )5t* (q* )/(q* 21).

B. Box-counting algorithms

The most common operative numerical implementatio
of multifractal analysis are the so-calledfixed-size box-
counting algorithms@18#. For a given measurem with sup-
port K,Rd, they consider thepartition sum

Z«~q!5 (
m~B!Þ0

@m~B!#q, ~2.7!
,

-
m-

s

qPR, where the sum runs over all the different nonemp
boxesB of a given side« in a grid covering the supportK,
that is,

B5)
k51

d

] l k«,~ l k11!«], ~2.8!

l k being integer numbers. The generalized fractal dimensi
of the measure are defined by the limit

D~q!5
1

q21
lim
«→0

logZ«~q!

log«
~2.9!

and numerically estimated through a linear regression of

1

q21
logZ«~q! ~2.10!

against log«.
Within this formalism, the mathematical definition~2.9! is

strictly valid for positiveq @24#. Numerical estimates work
well for q.1 in d<2 and render usually incorrect results f
q,0 @25–27#. This fact is obviously due to the presence
boxesB with an unnaturally small measure, which contribu
to the functionZ with diverging terms. In those cases, one
forced to apply different prescriptions@27,28#.

The box-counting version of the fixed-mass formalism
in general harder to implement ind.1 spatial dimensions
The difficulties reside in the proper selection of boxes with
given fixed measure.~For an application ind52 see Ref.
@20#.! From a numerical point of view, it is well known tha
the FMF is a good estimator of generalized dimensions
q,0 @that is, q* .0; see Eq.~2.6!# and bad forq.0
(q* ,0). The explanation of this behavior is related to t
space distribution of the measure. The FSF operates we
the dense regions of the support, whereas the FMF is e
cially appropriate to deal with its sparse regions. As we w
see in the next section, however, a fixed-mass algorithm
particularly simple to implement for one-dimensional me
sures, such as time sequences.

III. MULTIFRACTAL FORMALISM
FOR DISCRETE TIME SEQUENCES

Fractal geometry and multifractal analysis are well-kno
tools for the study of complex time signals~see, for instance
@29,30# and references therein!. In this section we will spe-
cialize the box-counting multifractal analysis sketched abo
for the particular case of a discrete one-dimensional ti
sequence.

We define a general discrete time sequenceT(N) as any
set of N positive real numbersT(N)5$tn%n51, . . . ,N , tn
PR1. At this level we will not make any assumption abo
the possible correlations of the sequence. However, we
assume that it is the outcome of some physical process
stationary state and that we can obtain sequences as long
might be required.
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A. Fixed-size algorithm

In order to study the multifractal properties of a sequen
T(N), we must first provide a meaningful physical measu
on it. As a first ansatz, we define thenaive measurem on the
support ]0,N] ,R over which the sequence is defined. Th
measure assigns to a given box in ]0,N] a weight propor-
tional to the sum of the valuetn of all the pointsn inside the
box @30#. Namely, if B(x,«) is a ball with center inx and
diameter«, then

m„B~x,«!…5
1

Q~N! (
x2«/2,n<x1«/2

tn , ~3.1!

where Q(N)5(n51
N tn is a normalization factor such tha

m(#0,N]) 51. In order to compute the generalized dime
sionsD(q) of m, consider a partition of ]0,N] into boxes of
diameterr , in a numberN/r , defined by

Bk,r5] ~k21!r ,kr], k51, . . . ,N/r . ~3.2!

The partition sum will then read

Zr~q!5 (
k51

N/r

@m~Bk,r !#
q5

1

Q~N!q(k51

N/r S (
~k21!r ,n<kr

tnD q

.

~3.3!

The generalized dimensions are defined through

D~q!5
1

q21
lim

r /N→0

logH 1

Q~N!q(k51

N/r S (
~k21!r ,n<kr

tnD qJ
log

r

N

.

~3.4!

The role of« is now played by the reduced diameter of t
boxesr /N. Numerically, we will obtain an estimate ofD(q)
as the slope of a linear regression of

1

q21
log(

k51

N/r S (
~k21!r ,n<kr

tnD q

~3.5!

against log(r/N). Note that we have dropped the normaliz
tion factorQ(N)q since it does not depend onr and therefore
plays no role in the regression. Moreover, the elimination
this factor results in general in a better performance of
numerical algorithm, except for those values ofq very close
to 1.

B. Fixed-mass algorithm

In order to define a fixed-mass algorithm for a discr
sequenceT(N), we start by constructing an approxima
Cantor setCT(N), composed by a collection ofN discrete
points on the interval ]0,1]. We define thedual measurem*
by associating a mass distribution with this approxim
Cantor set. The distribution corresponds to just assignin
mass unity to each one of its points. Consider thus the
quenceT(N)5$tn%n51, . . . ,N , with Q(N)5(n51

N tn , and let
us define the Cantor setCT(N) by

CT~N!5$xnu0,xn<1,n51, . . . ,N%, ~3.6!
e
e

-

-

f
e

e

e
a

e-

with

xn5
1

Q~N!(k51

n

tk . ~3.7!

We define a measure onCT(N) through the density function

rC~x!5
1

N(
n51

N

d~x2xn!, ~3.8!

whered is the usual Dirac delta function. The measure o
ball of centerx and diameter«, B(x,«)5]x2«/2,x1«/2], is
given by the integral

m* „B~x,«!…5E
x2«/2

x1«/2

rC~x!dx ~3.9!

and is equal to the number of points fromCT(N) contained in
the intervalB(x,«). It is easy to verify that the dual measu
m* has holes of finite size. Consider a giventp and

«̄ ,
tp

Q~N!
~3.10!

and define

x̄ 5xp211
tp

2Q~N!
. ~3.11!

Thenm* „B( x̄ , «̄ )…50. If tp is very large, then it will corre-
spond to a large hole inCT (N), with a diametertp /Q(N).
This implies that the fractal dimension of the support ofm*
would be in general less than 1. These regions of zero d
measure are related to the regions of large naive measu

We define the FSF multifractal spectrum ofm* , D* (q* ),
through the partition functionZ«* (q* ), which in turn is de-
fined onto the basis of a set of disjoint intervals coveri
]0,1]:

Bk,«5] ~k21!«,k«], k51, . . . ,1/«, ~3.12!

that is,

Z«* ~q* !5 (
k51

1/«

m* ~Bk,«!q* 5
1

Nq* (k51

1/« F E
~k21!«

k«

rC~x!dxGq*
.

~3.13!

The generalized dimensions are mathematically defined
the limit

D* ~q* !5
1

q* 21
lim
«→0

logZ«* ~q* !

log«
~3.14!

and numerically evaluated as the slope of a linear fit of

1

q* 21
logZ«* ~q* ! ~3.15!

against log«. We will drop again the normalization facto
Nq* .
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From a mathematical point of view, this construction re
resents a practical implementation of the notion ofinverse
multifractal measurediscussed by Mandelbrot and Riedi
Ref. @31#. Let us show thatm* indeed corresponds to th
inverse of the naive measure defined on the original
quence. Consider a boxBk of size «k , which containsnk
points from theCT(N), and therefore has an associated d
measure

m* ~Bk!5
nk

N
. ~3.16!

Consider that thosenk points are the consecutive poin
xl ,xl 11 , . . . ,xl 1nk21. Assuming that the extreme points c
incide with the extremes of the interval, then we ha
xl 1nk212xl;«k . If we recover the former definition ofxn ,
then

«k;xl 1nk212xl5
1

Q~N! (
s51

l 1nk21

ts2
1

Q~N!(s51

l

ts

5
1

Q~N! (
s5 l 11

l 1nk21

ts.m~ B̃k!, ~3.17!

whereB̃k is a certain box, associated with the naive meas
with diameter«̃ k;nk /N. Then we have

(
k

m* ~Bk!
q* «k

2t* 5(
k

S nk

N D q*
«k

2t*

;(
k

~ «̃ k!
q* m~ B̃k!

2t*

5(
k

m~ B̃k!
q« k̃

2t. ~3.18!

In the last equality we have identifiedt52q* andq52t* .
We then see that computing the spectrum ofm* by covering
its support with boxes of given size is the same as compu
the spectrum ofm by means of a covering of boxes of give
mass. That is, one measure is the inverse of the other, in
sense of@31#. Specializing to a box of fixed size or mass, w
can state that computing the fixed-mass spectrum of the
ive measurem on the sequenceT(N) amounts to the compu
tation of the fixed-size spectrum of the dual measurem* on
the approximate Cantor setCT(N) and the other way around

In the remainder of this paper we will focus mainly on t
spectrum of the dual measurem* for the time sequence con
sidered~dual spectrum!, as opposed to the spectrum of th
naive measure~naive spectrum!. Therefore, in order to alle
viate notation we will denote this particular dual spectru
and associated magnitudes without the explicit aster
superindex notation, unless otherwise stated.

IV. NUMERICAL RESULTS
FOR SYNTHETIC TIME SEQUENCES

In this section we present our estimates for the multifr
tal spectrum of some synthetic~computer generated! time
sequences. First we check our algorithm with two measu
-

e-

l

e,

g

he

a-

k-

-

es

of known multifractal spectrum. Finally, we study the spec
case of a random signal whose values are distributed acc
ing to a truncated power law.

The numerical procedure for computing estimates of
mensionsD(q) implies thequenched averageof the parti-
tion sum over an ensemble of statistically independent r
izations of the signal, each one with the same lengthN. By
quenched averages we refer to the mean value of the l
rithm of the partition sum̂ logZ«(q)&. As it is well known,
this kind of average is more stable and less subject t
particular sampling of scarce significance than the anne
average, which would consider the logarithm of the me
value of the partition sum log^Z«(q)&. In order to obtain re-
sults comparable in a straightforward way for any value ofq,
the linear regressions to estimateD(q) are always performed
over the same scaling interval, independently of the parti
lar value ofq considered.

A. Uniform random sequence

First, we analyze a uniform random sequenceR(N,m,s),
where the different valuestn are uniform uncorrelated ran
dom variables with mean valuem and standard deviations.
For our numerical experiments we choosem5100 and
s510. For a smooth signal such asR(N,m,s) we expect to
obtain a flat multifractal spectrum, that is, generalized
mensions equal to unity for both naive and dual measu
This expectation is confirmed by our computations, wh
yield generalized dimensions satisfyinguD(q)21u<0.001
for uqu<10 and dimensions very close to 1 for 10,uqu<40.

B. Self-similar deterministic sequence

We can construct a fully multifractal sequence starti
from any self-similar deterministic multifractal measure onR
@18,32#. We considered afixed-sizemeasure with contraction
factor r 51/2 and probabilitiesp150.3 andp250.7 @32# and
constructed a non-normalized approximation of the meas
composed by 1.13107 points by means of a standard a
gorithum @33#. The multifractal sequence was eventua
constructed by binning the sample points in 53104 boxes
covering the interval ]0,1] over which the original measu
was defined. The valuetn of the sequence is then given b
the occupation number of thenth box. Figure 2~a! depicts
such a sequence. Its self-similarity seems obvious even to
naked eye.

The analytical dual spectrum of the sequence is given
a function of the parametersPR, by the expression@18,32#

qs52
log~p1

s1p2
s!

log~s!
,

D~qs!5
s

11
log~p1

s1p2
s!

log~s!

. ~4.1!

@Recall thatD(q) stands now for the fixed-mass spectrum
the original naive multifractal measure. The expression
its fixed-size spectrum, commonly found in the literature,
rather less complex.# In our computations we averaged ov
ten different approximations of the sequence. Linear reg
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sions were performed over an interval of 2.5 decades. E
bars correspond to statistical errors from the regression a
rithm. In Fig. 2~b! we have plotted our numerical estimat
of the dual spectrum for sequences of lengthN510 000,
together with the analytic spectrum~4.1!. The figure shows
an excellent agreement between our estimates and the
pected analytic result, in the whole interval of values ofq
considered, both positive and negative. The accuracy of
fit can be slightly improved by increasing the sequen
length, but the estimates are already quite stable and co
for the value ofN showed in the figure. Computations pe
formed for the naive spectrum yielded an equally go
agreement with the analytical result.

C. Power-law random sequence

The sequence of transit times seems to be distributed
cording to a truncated power law of the form

r~ t,t0!5H const, tP@0,t0@

at2x, tP@ t0 ,`@
~4.2!

@see Eq.~1.1!#. In order to explore the applicability of ou
algorithm to a power-law sequence, we have construc
and analyzed a synthetic random sequenceD(N,t0)
5$tn%n51, . . . ,N , in which eachtn is a random variable sorte
according to the density~4.2!. In order to get results compa

FIG. 2. ~a! Succession of 50 000 values from a determinis
multifractal time sequence. Its parameters arer 51/2, p150.3, and
p250.7 ~see the text!. ~b! Mathematical dual spectrum of the s
quence in~a! ~full line!; the points represent our numerical es
mates.
or
o-

ex-

e
e
ect

d

c-

d

rable to those of the transit times sequences, we will o
allow values ofx in the range 2,x,3. For the purposes o
our computer calculations, we generate a synthetic sequ
by samplingN valuestn according to the rule

tn5H t0

2

h0
if h<h0

t0F 12h

12h0
G21/~x21!

if h.h0 ,

~4.3!

where h is a uniform random number in ]0,1] an
h05121/x. ~See the Appendix for details.! Given that each
term tn of any particular realization of the sample depen
linearly on t0, we infer that the multifractal spectrum of th
sequence will be independent of the particular cutofft0 cho-
sen. We will report results onDN(q), the multifractal spec-
trum computed for an ensemble of sequences of fixed len
N.

When computing the spectrum for any given value ofx
P]2,3@ , we find that for any fixedN, the results for different
samples of the sequence do not collapse onto the same
tion, but are widely scattered around some average posi
We explain that effect by the fact that, by construction, t
signal tn has no upper bound, so that it is possible to fi
that, just perchance, we have generated a sample with a
ticular term tp extremely large, in comparison to the e
pected average maximum value^TM& ~that is, arare event!.
It is easy to show~see the Appendix! that in a sequence ofN
random variables distributed according to a truncated po
law, the average maximum value expected scales in the l
of largeN as

^TM&;t0N1/~x21!. ~4.4!

In order to get rid of the effect of those rare events,
proceed to compute the spectrum of adepletedsequence, in
which all the values tn larger than a thresholdT̄M

[t0N1/(x21) have been truncated to the valueT̄M . By using
this trick, we obtain stable results for all sequence leng
collapsing onto the same average curve, within the e
bars. In order to check that our particular selection of
threshold does not have an exceedingly strong effect on
computed spectra, we have repeated our calculations for
ferent values ofT̄M , finding always the same behavior fo
the generalized dimensions, even for a threshold as larg
t0N. In the computations reported here, we average for e
sequence length over an ensemble of 25 different real
tions. Linear regressions were performed on intervals of t
decades. Statistical error bars are all smaller than 0.01.

First of all, we observe that forq,0, the dual spectra are
always ill defined, suffering from unacceptable correlati
coefficients and therefore being meaningless. This fact se
to be very natural since, as it is well known, fixed-size alg
rithms render bad results for negativeq. However, recall that
what we are actually measuring is thefixed-massspectrum of
the naive measure defined in Sec. III A, so that the fixed-s
spectrum of that very measure turns out to be well beha
for negative qand ill defined forpositive q, against all pre-
vious intuition. The reason of this fact is the following: Fo
negativeq the partition function is dominated by the spar
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regions of the measure and for positiveq the dense regions
The bad behavior forq,0 is a reflection of the presence o
holesin the support of the dual measure, the only source
boxes with abnormally small measure. Returning to the na
measure, this means that this measure is dominated
background of a few points with an extremely large meas
~corresponding to the holes in the dual measure!, which
cause the breakdown of the algorithm for positiveq. We
claim therefore that the dual measure as defined in Sec.
is the most appropriate to characterize extremely nonho
geneous series, such as the power-law distribution un
consideration.

In the rangeq>0, for every value ofx analyzed we ob-
serve stable dual spectra, dependent onN, for N.1000.
When increasing the value ofN, the spectrum becomes fla
ter and flatter. That is to say, the ‘‘multifractality’’ of th
sequence becomes smaller and smaller, withDN(q)→1 for
any q, whenN→`. This result is shown in Fig. 3. A mea
sure of the degree of multifractality~multifractality strength!
of the sequence could be the expression 12DN(`), where

DN~`!5 lim
q→1`

DN~q!. ~4.5!

We have computedDN(`) from linear regressions of th
partition function computed for a value ofq large enough to
ensure the stability of the estimates. Numerically we find t
the multifractality strength is a power-law function ofN,
with an exponent dependent onx

12DN~`!;N2g~x!. ~4.6!

In Fig. 4 we have plotted 12DN(`) versusN in log-log
scale, for different values ofx. The change in the slope i
evident. In Fig. 5 we represent the estimated values ofg as a
function of x. It is very well approximated by a linear rela
tionship g(x);x. Our numerical estimates of the coeffi
cients of this relation are

FIG. 3. Multifractal dual spectrum for a power-law time s
quence with exponentx52.22. From top to bottom, the curve
depict the spectrum for sequences of length 106, 33105, 105,
33104, 104, 33103, and 103, respectively.
f
e
a

e

B
o-
er

t

g~x!5~0.4860.01!x2~0.8260.02!. ~4.7!

In the limit of infiniteN we will find a flat spectrum~uniform
measure!; however, for any finite value ofN the determinis-
tic sequences are fully multifractal.

Equation ~4.6! suggests the possibility of some sort
finite-size scaling for the multifractal spectrum: We can
write Eq. ~4.6! in the form

12DN~`!

N2g~x!
;const, ~4.8!

that is, in the limitq→`, the spectra scales as a power la
of the sequence length. In view of this last formula, o
would be tempted to extend the scaling toall values ofq,
defining arenormalizedspectrum through the expression

FIG. 4. Plot of 12DN(`) as a function ofN for nine values of
x; from top to bottom,x varies from 2.1 to 2.9, in steps of 0.1. Th
full lines are linear fits to the power-law behavior.

FIG. 5. Dependence of the multifractality strength on the ex
nentx.



pl

nc
t
ist

o

f
al
u
t

it
si
w
th
p
-

h
in
o
h

hi

ze
ge

nces
s
n
not

ac-
ect
the
est

w

ctra
ed

he
tal

f,

e
he
, we

for

a
t

56 5291MULTIFRACTAL PROPERTIES OF POWER-LAW TIME . . .
12DN~q!

N2g~x!
512DR~q!. ~4.9!

The renormalized spectrumDR(q) is a universal function,
independent of the lengthN. It is an intrinsic property of the
initial time sequence, independent of any particular sam
and it can be therefore regarded as its true spectrum.

In Fig. 6 we have tested the scaling ansatz~4.9! for actual
computations. The best collapse is achieved for seque
with length in between 104 and 106 and for an exponen
g850.265. The power-law sequence considered has a d
bution exponentx52.22 and a predicted valueg50.25 ac-
cording to Eq.~4.7!, quite close to the actual value.

V. NUMERICAL RESULTS
FOR TRANSIT TIME SEQUENCES

We now turn to the numerical analysis of the sequence
SOC transit timesS(N,L). By construction, the valueTn is
the time spent into the pile by thenth grain in a series ofN
consecutive throws. It is conceivable that the landing o
tracer may provoke an avalanche that would eventu
evacuate out of the pile the very tracer that caused it. In s
a case, we assign a valueT51 to the transit time of tha
particular tracer. We have thereforeTnP@1,̀ @ . Since the
computer time devoted to any simulation is always a fin
amount, one has to stop the run at some point, leaving in
the pile, with nonzero probability, some of the tracers thro
at intermediate stages of the simulation. These tracers
did not emerge at the end of the run would represent a ga
the sequenceS(N,L). We fill these gaps by shifting the se
quence one site to the left at the pointsn when a tracer did
not come out. We have also considered sequences in w
each gap was filled with a lower bound of its correspond
transit time, estimated by substracting the time of addition
the gap to the total time that the simulation was running. T
results obtained with both procedures were identical, wit
the error bars.

FIG. 6. Finite-size scaling of the multifractal dual spectrum
the power-law time sequence with exponentx52.22.
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We work with sequences of total lengthM5106 points
from simulations of the one-dimensional Oslo model of si
L525, 50, 100, 200, 400, 800, and 1600. In order to avera
our partition sum, we proceed to decompose the seque
into subsequences of lengthN!M and perform the average
over the sample of the resultingM /N subsequences. Whe
computing the spectra, however, we find that they do
stabilize well. This is again due to the presence ofrare
events: In a subsequence of lengthN there are some points
with extremely large relative measure, corresponding to tr
ers that spent a long time inside the pile. In order to corr
this effect, we proceed in the same way as we did in
random power-law signal above: We truncate the larg

events up to a maximum cutoffT̄M . In view of Eqs.~1.1!
and ~4.2!, the SOC signal is akin to a truncated power-la
distributed sequence with cutofft0;Ln; comparing with Eq.

~4.4!, we selectT̄M5LnN1/(x21), with n51.30 andx52.22,
according to the simulations. Our results are the spe
DN,L(q), computed for an ensemble of sequences of fix
lengthN, coming from a rice pile of sizeL.

With the expertise we gained from the analysis of t
random power-law signal, we would expect the multifrac
spectrum of any SOC sequence to be ill defined forq,0, to
depend on the lengthN, and to be independent of the cutof
that is, of the system sizeL. The first prediction turns out to
be true; for q,0 the poor correlation coefficients yield
meaningless estimations. However, forq.0 we obtain
stable spectra depending onboth N and L. They show an
even more striking property: The spectradecreasemonotoni-
cally ~become flatter! with N and increase~become steeper!
with L. This behavior is shown in Figs. 7 and 8.

In a similar way as we did for the synthetic signal, w
proceed to investigate the degree of multifractality of t
SOC sequence. Studying the same strength parameter
find that the magnitude 12DN,L(`) can be fitted as a double
power law in bothN andL, that is,

FIG. 7. Multifractal dual spectrum for SOC sequences from
rice pile of sizeL5100. The different plots correspond to differen
sequence lengths; from top to bottom,N5105, 33104, 104,
33103, and 103.
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12DN,L~`!;N2g1Lg2. ~5.1!

Our estimates areg150.2760.02 and g250.3260.02.
These results are valid in the rangeN>10 000 andL<400.

The previous formula suggests again the possibility
constructing a renormalized spectrum, universal for all v
ues ofq and independent ofN andL. This is done by plot-
ting the finite-size relationship

12DN,L~q!

N2g1Lg2
512DR~q!. ~5.2!

The validity of this scaling is checked in Fig. 9. The plotte
spectra correspond to the smaller values ofL and larger val-
ues ofN for which the relation~5.1! holds. The best collapse
is obtained for effective exponentsg1850.29 andg2850.34,

FIG. 8. Multifractal dual spectrum for SOC sequences of len
N5104. The different plots correspond to different system siz
from top to bottom,L525, 50, 100, 200, 400, 800, and 1600.

FIG. 9. Finite-size scaling of the multifractal dual spectrum f
SOC sequences.
f
l-

very close to the ones predicted in the limitq→`. The re-
scaled spectra collapse onto a unique function, which is
terpreted again as a renormalized spectrum, in the sense
it is a property of the intrinsic dynamics of the rice pi
where the data came from and independent of partic
samples considered when computing it.

This scaling behavior can be accounted for by the eff
of the correlations inside the SOC sequence. No depend
whatsoever on the system size~the cutoff! was observed in
the synthetic power-law-distributed signal in Sec. IV C. T
only difference between that signal and the SOC one res
in thecorrelations. While the different points in the syntheti
sequence are completely uncorrelated by construction,
SOC transit times suffer obviously from long-range corre
tions. This fact is easy to realize when one considers
grains introduced into the pile at widely scattered init
times can emerge at the same instant in a single giga
avalanche.

As a numerical experiment, we have estimated the co
lation length in our SOC sequences as the minimum lengtÑ
above which anR/S analysis@34# provides a Hurst exponen
close to 0.5. Our estimates show that forL,400 the se-
quences become roughly uncorrelated for lengths larger
Ñ5104, whereas no serious estimate can be done
L.400. This result seems to be in contradiction with o
multifractal scaling, since in the range of validity of E
~5.1! the R/S analysis predicts a complete decorrelation a
hence an independence on the system size. We interpre
results as a hint towards the existence of deeper intrin
correlations than those revealed by a simpleR/S analysis.

VI. CONCLUSIONS

In this paper we have investigated the multifractal pro
erties of sequences of transit times of individual grains ins
the Oslo rice-pile model. To this purpose, we have develo
a fixed-mass multifractal algorithm, yielding the so-call
dual spectrum, particularly well suited to deal with highly
inhomogeneous one-dimensional measures~in our case, time
series!. This is particularly for the transit time sequence
which are power-law distributed and are hence constitute
any length scale by a more or less average flat backgro
interspersed by relatively infrequent huge peaks.

The main result of our analysis is the finite-size scali
relation ~5.2!. This scaling shows a particular behavior: Th
dual spectrum tends to decrease when increasing the
quence lengthN, whereas it tends to increase with the sy
tems sizeL. While the first statement is in complete agre
ment with numerical experiments on synthetic uncorrela
power-law sequences, the second constitutes a comple
unexpected result: As we show in Sec. IV C, the spectra
an uncorrelated random power-law signal do not depend
the distribution’s cutoff. Since the cutoff is related to th
system size of the rice pile, we should expect in the S
case to obtain results independent ofL. That is not the case
however, in our computations. The renormalized spectr
defined in Eq.~5.2! allows one to get rid of those finite-siz
effects and constitutes a magnitude that can be assoc
with the very rice-pile dynamics not influenced by the ha
ards of the samples used in its estimation.

h
;
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We interpret the initialL dependence as an effect of th
extremely long correlations in the transit time sequence.
the authors point out in Ref.@10#, the fact that the averag
speed of the tracers decreases with the system size pr
that there are correlations all along the system. These co
lations show up even more spectacularly when analyzing
multifractal properties of the sequences. A simpleR/S analy-
sis seems to show an absence of correlations forL,400 and
N.104. Hence it could seem reasonable that, for these
ues of the parameters, the spectra should become inde
dent ofL. This is not the case, however. We conclude, the
fore, that the transit time sequences indeed pos
correlations of a range far larger than that possibly revea
by theR/S analysis, correlations that are made evident o
in our more sophisticated multifractal analysis.
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APPENDIX

In this Appendix we derive some useful properties o
truncated power-law random variable. Consider a rand
variablet distributed according to the density~4.2!. Continu-
ity of the density att5t0 imposes the actual form

r~ t,t0!5H at0
21 , tP@0,t0@

at0
21S t

t0
D 2x

, tP@ t0 ,`@ .
~A1!

If x.1, then the density is normalizable, with a normaliz
tion constant
n

s
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d

y
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r,

m

-

a215E
0

t0 t

t0

dt

t0
1E

t0

`S t

t0
D 2x dt

t0
5

x

x21
. ~A2!

If we demand that the first moment of the distribution do
exist, we have to imposex.2 to obtain

^t&5E
0

`

tr~ t,t0!dt5
1

2l
t0;t0 , ~A3!

wherel5(x22)/(x21).
The distribution functionP(t,t0)5*0

t r(t,t0)dt has the
form

P~ t,t0!5H x21

x

t

t0
, tP@0,t0@

12
1

xS t

t0
D 2x11

, tP@ t0 ,`@ .

~A4!

In order to sample a sequence according to this distribut
we use theinversion method@35#: We equate the distribution
function to a uniform random numberh and obtain the cor-
responding value oft by inverting P(t,t0)5h. It is easy to
check that the resulting sample is given by Eq.~4.3!.

Consider now that we sortN independent random vari
ables according to the distributionr(t,t0), obtaining the
sample$t1 , . . . tN%. DefineTM as the maximum value in this
particular sample,TM5max$t1, . . . tN%. We want to compute
the average valuêTM&, weighted with the density~A1!. It is
easy to see that the probability of this maximum value be
less than or equal toTM is just equal to the probability of al
the individual valuestn being in turn less than or equal t
TM . This means that the distribution function of the max
mum valueTM is just

P~TM ,N!5P~TM ,t0!N. ~A5!

By differentiating Eq.~A5! we get the probability density o
maximum values
p~TM ,N!5
dP~TM ,N!

dTM
5H NS x21

x D NS TM

t0
D N21

t0
21 , TMP@0,t0@

N
x21

x S TM

t0
D 2xF12

1

xS TM

t0
D 2x11GN21

t0
21 , TMP@ t0 ,`@ .

~A6!
l
e

The average maximum value that we expect to observe iN
samples of the initial power-law distribution will then be

^TM&5E
t0

`

TMp~TM ,t0!dTM . ~A7!

After substituting Eq.~A6!, we obtain

^TM&
t0

5
N

N21S x21

x D N

1
N

lxE0

1F12
1

x
j1/lGN21

dj.

~A8!
In the limit N→`, the only contribution in the last integra
comes from values ofj very close to 0. We can therefor
evaluate the leading behavior for largeN by expanding the
integrand in Taylor series, keeping only the first order:

E
0

1F12
1

x
j1/lGN21

dj5E
0

1

expH ~N21!lnS 12
1

x
j1/lD J

.E
0

1

expH 2~N21!
j1/l

x J dj
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.lS N21

x D 2l

G~l!. ~A9!

In estimating the last integral we have extended to infin
the upper limit, an approximation allowed again in the lim
of largeN.

Collecting everything, we get finally
.

tt.

.

s
t i

. A

B

y

^TM&
t0

.
N

N21
expH 2Nln

x

x21J 1xl21G~l!N~N21!2l.

~A10!

The first term decays exponentially. Hence, in the limit
largeN, the leading behavior is given by

^TM&;t0N12l5t0N1/~x21!, ~A11!

up to a constant prefactor, depending only onx.
ys.
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@30# R. H. Riedi and J. Le´vy Véhel, Institut National de Recherch
en Informatique et en Automatique~INRIA !, Report No. 3129,
1997 ~unpublished!.

@31# B. B. Mandelbrot and R. H. Riedi, Adv. Appl. Math.18, 50
~1997!.

@32# K. J. Falconer,Fractal Geometry: Mathematical Foundation
and Applications~Wiley, New York, 1990!.

@33# M. Barnsley, Fractals Everywhere~Academic, New York,
1988!.

@34# J. Feder,Fractals ~Plenum, New York, 1988!.
@35# P. Bratley, B. L. Fox, and L. E. Schrage,A Guide to Simula-

tion, 2nd ed.~Springer-Verlag, New York, 1987!.


