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Multifractal properties of power-law time sequences: Application to rice piles
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We study the properties of time sequences extracted from a self-organized critical system, within the
framework of the mathematical multifractal analysis. To this end, we propose a fixed-mass algorithm, well
suited to deal with highly inhomogeneous one-dimensional multifractal measures. We find that the fixed-mass
(dual) spectrum of generalized dimensions depends on both the systemaimkthe lengthN of the sequence
considered, being stable, however, when these two parameters are kept fixed. A finite-size scaling relation is
proposed, allowing us to define a renormalized spectrum, independent of size effects. We interpret our results
as evidence of extremely long-range correlations induced in the sequence by the criticality of the system.
[S1063-651%97)08211-1

PACS numbd(s): 64.60.Lx, 47.53+n

I. INTRODUCTION The main results of the experiments and simulations of
Christenseret al.can be expressed through a single function,
Self-organized criticalitfSOC has been the subject of a the probability distribution of transit timeB(T,L)dT, which
great deal of interest since its introduction by Bak, Tang, ands defined as the probability of a given tracer spending a time
Wiesenfeld[1]. The main feature of SOC systems is thatbetweenT andT+dT inside a pile of linear sizé&. It was
they evolve, driven by means of an external force, into aound that
critical state characterized by the absence of any character-
istic time or length scale. The resulting extremely long-range L% T<L”
correlations show up through the peculiar f1power spec- P(T.L)~ TX, T>L?, 1.9)
trum and the geometrical fractal structure. SOC behavior has
been observed in many cellular automata models of sandvherev and y are certain characteristic exponents. The ex-
piles [1], invasion percolatiori2], biological evolution[3],  periments provided the valuesy=1.50+0.20 and
depinning in random medifd], and also in some natural y=2.40+0.20, whereas the cellular automaton model ren-
systems, such as earthquaké$ Even though the first cel- dered the exponentss=1.30+0.10 and y=2.22+0.10

lular automaton displaying SOC was conceived to represerft0,11]. This numerical evidence can be summarized in the
the dynamics of a sandpilel], the experimental evidence finite-size scaling ansatz

indicates that this is not actually the case: Real sandpiles are
not in a self-organized critical stafé—8]. Recently, how- T
ever, Fretteet al.[9] reported SOC behavior in a real granu- P(T,L)= Lﬁf(—> , (1.2
lar system, a one-dimensional rice pile. For grains of rice L”
with a considerable aspect ratio, the pile behaves critically,
this fact being accounted for by the increased friction, whichwith
is able to counterbalance the inertia effects predominant in
real sandpiles. f(x):[COHSt forx<1
In a subsequent paper, Christengaral. [10] analyzed XX for x>1.
the transport properties of individual grains inside a station-
ary rice pile. They measured theansit timeof individually ~ Given thaty>2 and provided that the probability distribu-
colored grains of ricétracers, defined as the time necessary tion is normalized, we have th@= v and the average value
for a grain to escape from the pile. Christengtral. found of T is finite, (T)~L" (see the Appendix The fact that
that the distribution of transit times follows a truncated y<<3 implies, however, that the second moment of the dis-
power-law form and that the average transport velocity of theribution is infinite,{T?) =,
grains diminishes as the system size increases. A cellular The finite-size scaling1.2) compacts the experimental
automaton model of a rice pile was proposed by Christensedata into a useful relationship, which its turn allows one to
et al. [10,17 (the so-called Oslo modelreproducing the extract valuable conclusions about the system. However, it is
phenomenological behavior of the actual experiments. Boactually quite obvious that it is possible to extract more in-
gura and Corral[12] have also suggested a theoretical sceformation about the rice pile from thgequenceof transit
nario for the Oslo model, based on a continuous-timeimes, apart from its distribution function. In order to gain a
random-walk model. different insight into the problem, we propose to consider the
output of the experiment from a different point of view. Let
us define the se$(N,L) as follows. Throw a tracer grain in
*Electronic address: romu@segovia.mit.edu a stationary pilgd 13] of linear sizeL and measure the time
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10 \ ‘ , : pends on the system sizeand, even worse, on the sequence

a) length N. This fact seems to doom any effort to describe a
single well-defined spectrum. However, by analyzib¢q)

in the limit g— o, we observe a power-law dependence\bn

andL. Extending the scaling to the whole rangegpéllows

6 - . us to define a “renormalized” spectrum, truly independent

of size effects. We interpret our results as an effect of the

extremely-long-ranged correlations present in the sequence,

correlations induced by the criticality of the rice pile.

We have organized this paper as follows. In Sec. Il we
2+ T review the multifractal analysis of general mathematical
measures, stressing the difference between fixed-size and
) A 1 fixed-mass formalisms. In Sec. Il we develop in particular

0 y| W

0 20000 40000 60000 80000 the formalism needed to deal with a discrete time sequence.
n Section IV analyzes different synthetic uncorrelated random
time sequences. First we check the accuracy of the algorithm
12 . ' ' ' against sequences of known spectra. Then we study a power-
b) law-distributed random signal, mimicking the real transit
10 b ] time sequences. Section V deals with our final goal, actual
v sequences of transit times from numerical simulations of the
8t ] Oslo model. Finally, our conclusions are discussed in
s o | Sec. VI.
=)
— ] Il. MULTIFRACTAL ANALYSIS: FIXED-SIZE
4r VS FIXED-MASS FORMALISM
2t T Loosely speaking, we cathultifractals[16—18 the math-
TR ematical sets that can be decomposed into an infinite set of

0 interwoven subfractals, labeled with an index each of
50000 51000 52000 n 53000 54000 53000 them characterized by a different fractal dimensfonThe
collection of these dimensions form the so-caltadltifrac-

tal spectrum {«) [19]. Strictly speaking, however, it is only
possible to assign mathematically meaningful multifractal
properties to aneasure(mathematical or physicadefined
over a given supporfl9]. A multifractal measure is com-
elapsed until it emerges outside within any avalanche. Pepletely specified either by its multifractal spectrdifw) or
forming the same measurement férdifferent grains, con- by its spectrum of generalized dimensiddgq). In this sec-
secutively thrown in the pile, we can construct the sequencon we review the main mathematical definitions and prop-
S(N,L)={T.}o—1 . n, whereT, is the time, measured in erties of multifractal analysis.

units of added grainghe slow time scal¢l10]), spent inside

the pile by thenth grain, in the sequence &f consecutive A. General definitions

throws. The seS(N,L) can be interpreted as a discrete time Following Ref.[19] (see alsd20]), consider a normalized

sequence, assigning to the instart1, . .. N the valueT,. : d _
In Fig. 1 we have represented such a sequence for the tranSjeasures defined on a sUppOK C 11", u(K)=1. LetA be

times recorded in the cellular automaton model of the rice[ahnatairgltrary partition oK in nonintersecting elements;,

pile described in Ref.10]. The system size ik =100. Fig- '

ure 1(a) shows a record of 90 000 transit times, whereas Fig. KCUA;, ANA=0, i#], (2.2)

1(b) depicts the 5000 points closer to the center of Fig).1 T )

These plots show rather conclusively that not only is the

distribution of transit times scale-free but also that thea- and |etpi andsi , |: 1, . ’N be the Variables that represent

quencels in some sense self-similar. the weight factor and the size factor corresponding to the
In this paper we will extract more information from the glementa,, respectively. We define the function

Oslo rice-pile model, studying the sequence of transit times

S(N,L). The method we have employed is thatadltifrac- N

tal analysis(which, on the other hand, is not new in the field Dy(q,7)= < > P?Si_7>, (2.2

of SOC[14,15). To this end, we have developed an algo- i=1

rithm particularly well suited to deal with one-dimensional

measures, like the ones under consideration. When compuithereq and = are any real numbers. The sum runs over all

ing the multifractal spectrum of the sequensgN,L), we  theN disconnected parts in which we decompose the support

observe that it shows considerable size effects: The spectrunf the measure and the angular brackets stand for an average

of generalized dimensiori3(q) (to be defined later grde-  over different realizations of the measure. For any measure,

FIG. 1. (a) Sequence of transit times for 90 000 tracer grains in
a computer simulation of the Oslo model; system 4ize100. (b)
Close-up of the central section @f).
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either deterministic or experimentghondeterministic we  qeR, where the sum runs over all the different nonempty

will assume that, for fine enough partitions, the functionpoxesB of a given sides in a grid covering the suppoK,
®,(q,7) collapses onto a single constant value, that is, that is,

N
d
e~ 7) =
<|21 pi's; > const. (2.3) lel-:[l]lks’(lk+l)8]’ (2_8)

Expression2.3) is an implicit equation, allowing one to de-

terminer(q) for a givenq or, converselyg(7) for a givenr. I being integer numbers. The generalized fractal dimensions
If we assume a partition in which &;=¢=const, then the 0f the measure are defined by the limit

size factore can be factorized from the former expression,

yielding 1 logzZ.(q)

" D(q)= lim (2.9
<El p?>~ef, (2.4

q-1,_, loge

and numerically estimated through a linear regression of

whereN(e) is the number of parts of size, containing a

certain measurp; different from zero. From this last expres- 1

sion we can compute the functiarfq) and thegeneralized q_—llogZS(q) (210
dimensions q) [21,22, defined byD(q)=7(q)/(g—1).

The f(«) spectrum is given by the Legendre transformationagainst log

f(a)=ming{ga—(gq—1)D 19,23. This approach corre- RS , . _— .

SE)o)nds toq{?he (go—cgllle(:?i)ie[d—sizg muItifra%Ft)aI formalism Within this formalism, the mathematical definiti¢2.9) is

(FSP. strictly valid for positiveq [24]. Numerical estimates work
On the other hand, we can select a partitibrin which well for g>1 in d<2 and render usually incorrect results for
p;=p=const, which yields g<0 [25-27. This fact is obviously due to the presence of
boxesB with an unnaturally small measure, which contribute
N(p) to the functionZ with diverging terms. In those cases, one is
< > siT> ~pd (2.5  forced to apply different prescriptiori27,28.
i=1 The box-counting version of the fixed-mass formalism is

in general harder to implement oh>1 spatial dimensions.

where N(p) is the number of parts of measups with a  The difficulties reside in the proper selection of boxes with a
certain sizeg; different from zero. From this expression we given fixed measure(For an application id=2 see Ref.
can calculate the functiog(7) and then, inverting it, com- [20].) From a numerical point of view, it is well known that
pute the spectrund(q). This second approach correspondsthe FMF is a good estimator of generalized dimensions for
to the so-calledixed-mass multifractal formalistiFMF). g<O0 [that is, g*>0; see Eg.(2.6)] and bad forg>0

Both the FSF and FMF are completely equivalent. In or-(q* <0). The explanation of this behavior is related to the
der to stress this correspondence, we define the new parampace distribution of the measure. The FSF operates well in
etersq*=—r7 and 7 =—q and substitute them into Eq. the dense regions of the support, whereas the FMF is espe-
(2.5. Now both Egs(2.4) and (2.5 read the same, the only cially appropriate to deal with its sparse regions. As we will
difference being the change of rolemfande;. The equiva- see in the next section, however, a fixed-mass algorithm is
lence between both formalisms is explicitly illustrated by theparticularly simple to implement for one-dimensional mea-
identities sures, such as time sequences.

*=—(q—1)D(q),
q (q=1)D(a) Ill. MULTIFRACTAL FORMALISM

q FOR DISCRETE TIME SEQUENCES

D)= 15— DD(a)”

(2.6 Fractal geometry and multifractal analysis are well-known

tools for the study of complex time signdkee, for instance,

with D*(g*)= 7 (q*)/(q* — 1). [29,30 and references therginin this section we will spe-
cialize the box-counting multifractal analysis sketched above
for the particular case of a discrete one-dimensional time
sequence.

The most common operative numerical implementations We define a general discrete time sequefigd) as any
of multifractal analysis are the so-callefiked-size box- set of N positive real numbersZ(N)={t,} -1 n. tn
counting algorithmd18]. For a given measurg with sup- e R*. At this level we will not make any assumption about

B. Box-counting algorithms

port KCRY, they consider theartition sum the possible correlations of the sequence. However, we will
assume that it is the outcome of some physical process in a
Z.(q)= > [w(B)], 2.7) stgtionary state and that we can obtain sequences as long as it
w(B)#0 might be required.



56 MULTIFRACTAL PROPERTIES OF POWER-LAW TIME ... 5287

A. Fixed-size algorithm with

In order to study the multifractal properties of a sequence
7(N), we must first provide a meaningful physical measure X
on it. As a first ansatz, we define thaive measurg. on the "~ Q(N)
support JON]JCR over which the sequence is defined. This ] ] )
measure assigns to a given box inNP,a weight propor- We define a measure @i(N) through the density function
tional to the sum of the valug, of all the pointsn inside the LN
box [30]. Namely, if B(x,&) is a ball with center inx and _= _
diametere, then )= N2, ), S

2 ty. 3.7

whereé is the usual Dirac delta function. The measure of a
ball of centerx and diametee, B(X,e)=]x—¢e/2x+ /2], is
given by the integral

1(B(X,8))= t, (3D

Q( N) X—el2<ns=x+¢gl2

where Q(N)=E,’:‘:1tn is a normalization factor such that o

_ - - _ Xte
,u.(]O,N])—l. In order to Comnge the gen_erallzed dimen uw* (B(x,8))= f pe(x)dx (3.9
sionsD(q) of u, consider a partition of JO] into boxes of

diameterr, in a numbem/r, defined by
and is equal to the number of points frai{ N) contained in

kr=1(k=1)r.kr], k=1,... N/r. (3.2 theintervalB(x,). It is easy to verify that the dual measure

* has holes of finite size. Consider a ivq)nand
The partition sum will then read # g

t

N/r N/r — p
q e< (3.10
Z(@)=2 [w(By)]f=—2> | X tn) : QMN)
k=1 Q(N)IK=1 \ (k-1jr<n=kr
(3.3 and define
The generalized dimensions are defined through — N tp a1
i q Xt 2y 843
og > th . B . Lo
_ Q(N)W=1 | (k=1ir<n=kr Thenu* (B(x,&))=0. If t, is very large, then it will corre-
D(q)= q-1 lim . : spond to a large hole id; (N), with a diametett,/Q(N).
r/N-0 |ogN This implies that the fractal dimension of the supporiudf

3.4 would be in general less than 1. These regions of zero dual
(3.4 measure are related to the regions of large naive measure.

The role ofe is now played by the reduced diameter of the ~We define the FSF mult_ifrai:tal*spectrpm/p’f, D*(q*),
boxesr/N. Numerically, we will obtain an estimate &f(q)  through the partition functioZ (q*), which in turn is de-

as the S|Ope of a linear regression of fined onto the basis of a set of d|5J0|nt intervals Covering
0,1]:
1 N/r q ] ]
|og2 >t (3.5 B.=1(k—1)eke], k=1,...,1k, (3.12
q— 1 (k=1)r<n<kr
. ~ thatis,
against log(/N). Note that we have dropped the normaliza-
tion factorQ(N)¢ since it does not depend orand therefore e e *
plays no role in the regression. Moreover, the elimination of Z¥ (q*)= E w*(By, 8)‘4 . [f pc(x)dx
this factor results in general in a better performance of the N* k=1 ] J(k-1)e
numerical algorithm, except for those valuesqofery close 313
ol The generalized dimensions are mathematically defined by
the limit
B. Fixed-mass algorithm
In order to define a fixed-mass algorithm for a discrete D* (g% )= 1 i logZ? (q*) 31

sequence?(N), we start by constructing an approximate (q*)= q*—lslino loge (3.14
Cantor setC/{N), composed by a collection dfi discrete
points on the interval ]0,1]. We define thleal measurg.*  and numerically evaluated as the slope of a linear fit of
by associating a mass distribution with this approximate
Cantor set. The distribution corresponds to just assigning a
mass unity to each one of its points. Consider thus the se- " logZ% (q*) (3.19
quenceZ(N)={t,}n=1 .. n, With Q(N)=3N_;t,, and let q -1

us define the Cantor s€4(N) by against log. We will drop again the normalization factor

CAN) ={x,|0<x,<1n=1,... N}, (3.6) NI
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From a mathematical point of view, this construction rep-of known multifractal spectrum. Finally, we study the special
resents a practical implementation of the notioniroferse  case of a random signal whose values are distributed accord-
multifractal measureliscussed by Mandelbrot and Riedi in ing to a truncated power law.

Ref. [31]. Let us show thaj* indeed corresponds to the  The numerical procedure for computing estimates of di-
inverse of the naive measure defined on the original semensionsD(q) implies thequenched averagef the parti-
guence. Consider a bo&, of size e, which containsn, ~ tion sum over an ensemble of statistically independent real-
points from theC/N), and therefore has an associated dualzations of the signal, each one with the same lengiiBy

measure guenched averages we refer to the mean value of the loga-
rithm of the partition sum(logZ,(q)). As it is well known,

(B ):ﬂ (3.16 this_kind of average is more stable and less subject to a

WTNC ' particular sampling of scarce significance than the annealed

. _ _ ~average, which would consider the logarithm of the mean
Consider that those, points are the consecutive points value of the partition sum ldg.(q)). In order to obtain re-

X\, Xi+1, - - - Xi+n, 1. Assuming that the extreme points co- sults comparable in a straightforward way for any valug,of
incide with the extremes of the interval, then we havethe linear regressions to estim&éq) are always performed
X +n—17 X1~ Ek- If we recover the former definition of,, over the same scaling interval, independently of the particu-
then lar value ofq considered.
1 -1 1 ! A. Uniform random sequence
S Xen-1 T XIT ayy Z ts—w 2, ts Fi .
$=1 s=1 irst, we analyze a uniform random sequefit@N,m, o),
-1 where the different value, are uniform uncorrela_ted ran-
_ to= (B (3.17 dom variables Wlth mean valua and standard deviatios.
Q(N) 541 ° KB ' For our numerical experiments we choose=100 and

o=10. For a smooth signal such &N, m, o) we expect to
whereB, is a certain box, associated with the naive measuredbtain a flat multifractal spectrum, that is, generalized di-
with diameterz .~ n/N. Then we have mensions equ_al to unlty.for both naive and dua_ll measures.

This expectation is confirmed by our computations, which
q* yield generalized dimensions satisfyin®(q)—1|=<0.001

n . . .
K e " for |g|=<10 and dimensions very close to 1 for<{}|<40.

2 prBY e T =X (W

B. Self-similar deterministic sequence

N; (e® u(B™" We can construct a fully multifractal sequence starting
from any self-similar deterministic multifractal measurelon
_ 2 BaT (3.18 [18,32. We considered &ixed-sizaneasure with contraction
2 i e : factorr = 1/2 and probabilitiep, = 0.3 andp,=0.7[32] and
constructed a non-normalized approximation of the measure
In the last equality we have identifiec= —q* andq=—7*.  composed by 110" points by means of a standard al-
We then see that computing the spectrunudfby covering  gorithum [33]. The multifractal sequence was eventually
its support with boxes of given size is the same as computingonstructed by binning the sample points ix 50* boxes
the spectrum ofx by means of a covering of boxes of given covering the interval ]0,1] over which the original measure
mass. That is, one measure is the inverse of the other, in theas defined. The valug, of the sequence is then given by
sense of31]. Specializing to a box of fixed size or mass, we the occupation number of theth box. Figure 2a) depicts
can state that computing the fixed-mass spectrum of the nsuch a sequence. Its self-similarity seems obvious even to the
ive measurex on the sequenc&N) amounts to the compu- naked eye.
tation of the fixed-size spectrum of the dual measwfeon The analytical dual spectrum of the sequence is given, as
the approximate Cantor séf(N) and the other way around. a function of the parametere R, by the expressiofil8,32
In the remainder of this paper we will focus mainly on the

spectrum of the dual measupe for the time sequence con- _ log( pi+p3)
sidered(dual spectrumy as opposed to the spectrum of the Gs= log(s) '
naive measuré¢naive spectrum Therefore, in order to alle-
viate notation we will denote this particular dual spectrum s
and associated magnitudes without the explicit asterisk- D(qs) = - 4.0
superindex notation, unless otherwise stated. Iogl(p1+)p2)
og(s

IV. NUMERICAL RESULTS

FOR SYNTHETIC TIME SEQUENCES [Recall thatD (q) stands now for the fixed-mass spectrum of

the original naive multifractal measure. The expression for
In this section we present our estimates for the multifracits fixed-size spectrum, commonly found in the literature, is

tal spectrum of some syntheticomputer generat¢dime  rather less complekin our computations we averaged over

sequences. First we check our algorithm with two measureten different approximations of the sequence. Linear regres-
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50000 : : : : rable to those of the transit times sequences, we will only
allow values ofy in the range 2 y<3. For the purposes of

40000 L a) || our computer calculations, we generate a synthetic sequence
by samplingN valuest,, according to the rule

30000 - § >

t, tor/_ if 7=<mno
20000 0
t,= 1—p] YD 4.3
10000 to [ if 7> 0,

0 0 1000050000 30000 40000 50000 where » is a uniform random number in ]0,1] and

n 1n0o=1—1/x. (See the Appendix for detai)sGiven that each
termt, of any particular realization of the sample depends
linearly ont,, we infer that the multifractal spectrum of the
sequence will be independent of the particular cutgitho-
sen. We will report results oB(q), the multifractal spec-
trum computed for an ensemble of sequences of fixed length
N.

When computing the spectrum for any given valueyof
e12,3[, we find that for any fixedN, the results for different
samples of the sequence do not collapse onto the same func-
tion, but are widely scattered around some average position.
We explain that effect by the fact that, by construction, the
signalt,, has no upper bound, so that it is possible to find

2300 100 10.0 30.0 that, just perchance, we have generated a sample with a par-
q ticular termt, extremely large, in comparison to the ex-
pected average maximum val(i€y) (that is, arare event.

FIG. 2. (a) Succession of 50 000 values from a deterministic It IS €asy to showsee the Appendjxthat in a sequence ot
multifractal time sequence. Its parameters mrel/2, p,=0.3, and  andom variables distributed according to a truncated power
p,=0.7 (see the tejt (b) Mathematical dual spectrum of the se- 1aw, the average maximum value expected scales in the limit
quence in(a (full line); the points represent our numerical esti- Of largeN as
mates.

D(q)

(Ty) ~toNYX= D), (4.4

sions were performed over an interval of 2.5 decades. Error .
bars correspond to statistical errors from the regression algd[] order to get rid of the effect of those rare events, we
rithm. In Fig. 2b) we have plotted our numerical estimates prqceed to compute the spectrum ocﬂeapletedsequencg n

of the dual spectrum for sequences of lengith-10 000, Which all the valuest, larger than a thresholdT
together with the analytic spectrutd.1). The figure shows =t,N¥&~1) have been truncated to the vallig . By using

an excellent agreement between our estimates and the ethis trick, we obtain stable results for all sequence lengths,
pected analytic result, in the whole interval of valuesqof collapsing onto the same average curve, within the error
considered, both positive and negative. The accuracy of thkars. In order to check that our particular selection of the
fit can be slightly improved by increasing the sequencehreshold does not have an exceedingly strong effect on the
length, but the estimates are already quite stable and correcomputed spectra, we have repeated our calculations for dif-

for the value ofN showed in the figure. Computations per- ferent values ofTy,, finding always the same behavior for
formed for the naive spectrum yielded an equally goodthe generalized dimensions, even for a threshold as large as

agreement with the analytical result. toN. In the computations reported here, we average for each
sequence length over an ensemble of 25 different realiza-
C. Power-law random sequence tions. Linear regressions were performed on intervals of two

. . decades. Statistical error bars are all smaller than 0.01.
The sequence of transit times seems to be distributed ac- First of all, we observe that fay<0, the dual spectra are
cording to a truncated power law of the form always ill defined, suffering from unacceptable correlation
const, te[0to] coefficients and the_refore be-_in_g meaningless._This f_act seems
p(titg)=1 (4.2)  tobe very natural since, as it is well known, fixed-size algo-
at™, te[to,o[ rithms render bad results for negatigeHowever, recall that
what we are actually measuring is tfieed-masspectrum of
[see Eq.(1.1)]. In order to explore the applicability of our the naive measure defined in Sec. lll A, so that the fixed-size
algorithm to a power-law sequence, we have constructedpectrum of that very measure turns out to be well behaved
and analyzed a synthetic random sequerndéN,tg) for negative gand ill defined forpositive q against all pre-
={t,}n=1 ... N, in which eacht, is a random variable sorted vious intuition. The reason of this fact is the following: For
according to the densit{4.2). In order to get results compa- negativeq the partition function is dominated by the sparse
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FIG. 3. Multifractal dual spectrum for a power-law time se-
quence with exponeny=2.22. From top to bottom, the curves ] )
depict the spectrum for sequences of lengtl§, 1Bx 1P, 1CP, FIG. 4. Plot of 1-Dy() as a function oN for nine values of
3x10% 10¢, 3x 1%, and 16, respectively. x; from top to bottom,y varies from 2.1 to 2.9, in steps of 0.1. The

full lines are linear fits to the power-law behavior.

regions of the measure and for positigghe dense regions.
The bad behavior fog<0 is a reflection of the presence on ¥(x)=(0.48+0.03) x—(0.82+0.02). (4.7
holesin the support of the dual measure, the only source o]‘

boxes with abnormally small measure. Returning to the naiv?neasurﬁ however, for any finite value df the determinis-
measure, this means that this measure is dominated byt% sequences are fully multifractal.

background of a few points with an extremely large measure Equation (4.6) suggests the possibility of some sort of

(corresg:) ncgng l:g the thItﬁS ml thgthdua;l mea}‘_,?veh\;sh finite-size scaling for the multifractal spectrum: We can re-
cause the breakdown of the algorithm for positiye We évrite Eq. (4.6) in the form

claim therefore that the dual measure as defined in Sec. IlI
is the most appropriate to characterize extremely nonhomo- 1Dy ()
geneous series, such as the power-law distribution under - N7
consideration. N~
In the rangeq=0, for every value ofy analyzed we ob- L o
serve stable dual spectra, dependentNynfor N> 1000. that is, in the limitgq— o, the spectra scgles as a power law
When increasing the value &, the spectrum becomes flat- of the sequence length. In view of t_hls last formula, one
ter and flatter. That is to say, the “multifractality” of the Would be tempted to extend the scalinga values ofq,
sequence becomes smaller and smaller, Wil{q) — 1 for defining arenormalizedspectrum through the expression
any q, whenN—w~. This result is shown in Fig. 3. A mea-
sure of the degree of multifractalitynultifractality strength 0.60 . . , .
of the sequence could be the expressienliy(«), where

n the limit of infinite N we will find a flat spectruntuniform

~const, (4.8

Dy()= lim Dy(q). (4.5 0.50 -

v=0.48y, — 0.82
q—+x

We have computed () from linear regressions of the 0.40

partition function computed for a value gflarge enough to Y

ensure the stability of the estimates. Numerically we find that

the multifractality strength is a power-law function bf, 0.30 -

with an exponent dependent gn

1—Dy(oe)~N~7, (4.6 020 ¢

In Fig. 4 we have plotted £ Dy(>) versusN in log-log
scale, for different values gf. The change in the slope is 2.0 2.2 24 2.6 2.8 3.0
evident. In Fig. 5 we represent the estimated valueg a$ a X

function of y. It is very well approximated by a linear rela-

tionship y(x)~x. Our numerical estimates of the coeffi-  FIG. 5. Dependence of the multifractality strength on the expo-
cients of this relation are nenty.
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00 0.0 10.0 20.0 30.0 40.0
q FIG. 7. Multifractal dual spectrum for SOC sequences from a

rice pile of sizeL =100. The different plots correspond to different
FIG. 6. Finite-size scaling of the multifractal dual spectrum for Sequence lengths; from top to bottorhi=1C°, 3x10%, 10,

the power-law time sequence with expongnt 2.22. 3x10° and 16.
1-Dy(a) We work with sequences of total lengM=10° points
N~ Y00 =1-Dr(9). (4.9 from simulations of the one-dimensional Oslo model of size

L=25, 50, 100, 200, 400, 800, and 1600. In order to average

The renormalized spectrulg(q) is a universal function, Our partition sum, we proceed to decompose the sequences
independent of the lengtK. It is an intrinsic property of the into subsequences of length<M and perform the averages
initial time sequence, independent of any particular samplegver the sample of the resultifg/N subsequences. When
and it can be therefore regarded as its true spectrum. computing the spectra, however, we find that they do not
In Fig. 6 we have tested the scaling ang@t®) for actual  stabilize well. This is again due to the presencerarfe

computations. The best collapse is achieved for sequenceyents In a subsequence of lengtth there are some points
with length in between 0and 16 and for an exponent with extremely large relative measure, corresponding to trac-
v'=0.265. The power-law sequence considered has a distrers that spent a long time inside the pile. In order to correct
bution exponenfy=2.22 and a predicted valug=0.25 ac-  this effect, we proceed in the same way as we did in the

cording to Eq.(4.7), quite close to the actual value. random power-law signal above: We truncate the largest
events up to a maximum cutoffy, . In view of Eqgs.(1.)
V. NUMERICAL RESULTS and (4.2), the SOC signal is akin to a truncated power-law
FOR TRANSIT TIME SEQUENCES distributed sequence with cutdff~L"; comparing with Eq.

We now turn to the numerical analysis of the sequence of4.4), we selecfT,=L"NY0~1), with »=1.30 andy=2.22,
SOC transit timesS(N,L). By construction, the valug,, is according to the simulations. Our results are the spectra
the time spent into the pile by th&h grain in a series oR Dy,.(q), computed for an ensemble of sequences of fixed
consecutive throws. It is conceivable that the landing of dengthN, coming from a rice pile of sizé.
tracer may provoke an avalanche that would eventually With the expertise we gained from the analysis of the
evacuate out of the pile the very tracer that caused it. In suctandom power-law signal, we would expect the multifractal
a case, we assign a valde=1 to the transit time of that spectrum of any SOC sequence to be ill definedgfer0, to
particular tracer. We have therefolig,e[1,=[. Since the depend on the lengtN, and to be independent of the cutoff,
computer time devoted to any simulation is always a finitethat is, of the system size. The first prediction turns out to
amount, one has to stop the run at some point, leaving insidge true; for q<0 the poor correlation coefficients yield
thg pile, Wlth nonzero probab|I|ty., some of the tracers throw”meaningless estimations. However, fqr=0 we obtain
at intermediate stages of the simulation. These tracers thgfable spectra depending doth N and L. They show an
did not emerge at the end of the run would represent a gap iByen more striking property: The spectrecreasenonotoni-

the sequencé&(N,L). We fill these gaps by shifting the se- ; .
guence one site to the left at the pointsvhen a tracer did ce_xlly (becqme flattgrw!th N and [ncrgase(become steepgr
with L. This behavior is shown in Figs. 7 and 8.

not come out. We have also considered sequences in which S : S
In a similar way as we did for the synthetic signal, we

each gap was filled with a lower bound of its correspondin dioi tiqate the d ; ltifractality of th
transit time, estimated by substracting the time of addition o roceed 1o investigale the degree of mulliiractality of the

the gap to the total time that the simulation was running. Theo©OC Seéduence. Studying the same strength parameter, we

results obtained with both procedures were identical, withirfind that the magnitude 1Dy (=) can be fitted as a double
the error bars. power law in bothN andL, that is,
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: very close to the ones predicted in the limgit>. The re-

N =10 scaled spectra collapse onto a unique function, which is in-
terpreted again as a renormalized spectrum, in the sense that
it is a property of the intrinsic dynamics of the rice pile
where the data came from and independent of particular
samples considered when computing it.

This scaling behavior can be accounted for by the effect
of the correlations inside the SOC sequence. No dependence
whatsoever on the system sighe cutof was observed in
the synthetic power-law-distributed signal in Sec. IV C. The
only difference between that signal and the SOC one resides
in the correlations While the different points in the synthetic
sequence are completely uncorrelated by construction, the
SOC transit times suffer obviously from long-range correla-
tions. This fact is easy to realize when one considers that
grains introduced into the pile at widely scattered initial
times can emerge at the same instant in a single gigantic

. avalanche.
FIG. 8. M”'F'fraCtal dual spectrum for SOC. sequences of Ie_ngth As a numerical experiment, we have estimated the corre-
N=10*. The different plots correspond to different system sizes;

from top to bottomL =25, 50, 100, 200, 400, 800, and 1600. 'lation length in our SOC sequences as the minimum leNgth
above which arR/S analysig 34] provides a Hurst exponent

close to 0.5. Our estimates show that 10400 the se-
quences become roughly uncorrelated for lengths larger that

Our estimates arey;=0.27+0.02 and y,=0.32+0.02. N=10%, whereas no serious estimate can be done for

These results are valid in the raniye=10 000 and_<400. L>400. This result seems to be in contradiction with our
The previous formula suggests again the possibility ofmultifractal scaling, since in the range of validity of Eq.

constructing a renormalized spectrum, universal for all val{5.1) the R/S analysis predicts a complete decorrelation and

ues ofq and independent dfl andL. This is done by plot- hence an independence on the system size. We interpret our
ting the finite-size relationship results as a hint towards the existence of deeper intrinsic

correlations than those revealed by a simpI& analysis.

1.00

0.90

DN,L(Q) 0.80 -

0.70

0.60 :
30.0

1-Dy () ~N"7L72 (5.1)

1-Dy,.(q) _

N~ 71L 72 1=Dr(@).

(5.2
VI. CONCLUSIONS

The validity of this scaling is checked in Fig. 9. The plotted
spectra correspond to the smaller value$ @nd larger val-
ues ofN for which the relation5.1) holds. The best collapse
is obtained for effective exponentg =0.29 andy,=0.34,

In this paper we have investigated the multifractal prop-
erties of sequences of transit times of individual grains inside
the Oslo rice-pile model. To this purpose, we have developed
a fixed-mass multifractal algorithm, yielding the so-called
dual spectrum particularly well suited to deal with highly
inhomogeneous one-dimensional meastiresur case, time

08 ' serieg. This is particularly for the transit time sequences,
which are power-law distributed and are hence constituted at
“n“nl any length scale by a more or less average flat background,
0.6 - uuuull' | interspersed by relatively infrequent huge peaks.
. ”w!! The main result of our analysis is the finite-size scaling
S;_] “ﬁ’ relation (5.2). This scaling shows a particular behavior: The
g |' dual spectrum tends to decrease when increasing the se-
T o4l !" e =25 N=3x 10" quence lengtiN, whereas it tends to increase with the sys-
é [ +L=25 N=10’ tems sizel.. While the first statement is in complete agree-
@ L <«L=50 N=3x 10" ment with numerical experiments on synthetic uncorrelated
= 1] vL=50 N=10’ power-law sequences, the second constitutes a completely
QI 02 o » L=100 N=3x 10" | unexpected result: As we show in Sec. IV C, the spectra of
= ) = L=200 N=10" an uncorrelated random power-law signal do not depend on
# A L=400 N=3x 10 the distribution’s cutoff. Since the cutoff is related to the
A system size of the rice pile, we should expect in the SOC
0.0 - ‘ ‘ . case to obtain results independentLofThat is not the case,
0.0 10.0 2((1)'0 300 400 however, in our computations. The renormalized spectrum

defined in Eq(5.2) allows one to get rid of those finite-size
effects and constitutes a magnitude that can be associated

FIG. 9. Finite-size scaling of the multifractal dual spectrum for with the very rice-pile dynamics not influenced by the haz-
SOC sequences.

ards of the samples used in its estimation.
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We interpret the initialL dependence as an effect of the tot dt jw< t )—X dt  x A2)
—— A2
t

extremely long correlations in the transit time sequence. As al= o] T y=1
the authors point out in Ref10], the fact that the average o/ lo X
speed of the tracers decreases with the system size provgSye gemand that the first moment of the distribution does
that there are correlations all along the system. These COIMesist we have to imposg>2 to obtain

lations show up even more spectacularly when analyzing the

multifractal properties of the sequences. A simRI& analy- % 1

sis seems to show an absence of correlations 0400 and (t)= J’ tp(t,to)dtZX'foNto, (A3)
N>10*. Hence it could seem reasonable that, for these val- 0

ues of the parameters, the spectra should become i”dep%here)\z(x—Z)/(x—l).

dent ofL. This is not the case, however. We conclude, there- . qistribution functionP(t,to) = [Lp(t,to)dt has the
fore, that the transit time sequences indeed pose 0 oFR%70
correlations of a range far larger than that possibly reveale

OtO t0 0

by the R/S analysis, correlations that are made evident only x—1t
in our more sophisticated multifractal analysis. T i te[Otol
0
P(t,ty) = 1/ 1) -x+1 (A4)
ACKNOWLEDGMENTS . _( _) te[ty,ol.
X\ to ’ ’

| am very indebted to Alvaro Corral for providing the

simulational data analyzed in this paper and for many clariin order to sample a sequence according to this distribution,
fying discussions at the first stages of this work. The manuwe use thénversion metho@35]: We equate the distribution
script benefited greatly from critical readings by Jens Fedefynction to a uniform random numbey and obtain the cor-
Jordi Mach, Rudolf Riedi, and Daniel H. Rothman. This responding value of by inverting P(t,t,) = 7. It is easy to

work has been finanCia”y Supported by the Ministerio decheck that the resulting Samp'e is given by E,qs)

Educacio y Cultura(Spain. Consider now that we soll independent random vari-
ables according to the distributiop(t,ty), obtaining the
APPENDIX samplefty, .. .ty}. DefineTy, as the maximum value in this

particular sampleT ;= maxt,, . . .ty}. We want to compute

In this Appendix we derive some useful properties of a ) \ . )
truncated power-law random variable. Consider a randonr'lhe average valugTy), weighted with the densitjAl). Itis

variablet distributed according to the densi#.2). Continu- easy to see that the probability of this maximum value being

; ; o less than or equal td), is just equal to the probability of all
ity of the density at=t, imposes the actual form o M= o T
Y y o 'Mp u the individual valued, being in turn less than or equal to

aty®, te[Oto] Tw . This means that the distribution function of the maxi-
mum valueT), is just

pltt)=1 [t) (A1)
— te[ty,”].
aty | o teltosl (T N)=P(Tu to)™ (A5)
If x>1, then the density is normalizable, with a normaliza-By differentiating Eq.(A5) we get the probability density of
tion constant maximum values
|
-1 N T N—-1
N(X_) (_M) tgl’ TyelO0tol
Ty TN x |\t "
77( M )_ dTM - X_l TM -X 1 TM —x+1]N-1 . ( )
N—|—| [1-—|— to™, Tmelto,e[.
X \ 1 x\ to

The average maximum value that we expect to obseri in In the limit N—oo, the only contribution in the last integral
samples of the initial power-law distribution will then be ~ comes from values of very close to 0. We can therefore
evaluate the leading behavior for lareby expanding the

(" integrand in Taylor series, keeping only the first order:
Tu)= f Tum(Tw to)d Ty A7) "
(Tm) to mT(Tm to)d Ty (A7)

. . 1 1 N-1 1 1
After substituting Eq(A6), we obtain f [1_ ;gl’* d§=f exp{ (N— 1)In( 1— ;gmﬂ
N N—1 0 0
<T'V'>: N /X_l) ﬁ 11_3510\
to N-1| x AxJo X

df 1 é‘;l/)\
(A8) :foeXp{_(N_l)Y}dg
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N—1

-\
z)\(—) I'(N). (A9)
X
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<TM>z
to,  N-1

X _ _
exp{—NlnE + X  IT(MN(N=1) N,
(A10)

The first term decays exponentially. Hence, in the limit of

In estimating the last integral we have extended to infinitylargeN, the leading behavior is given by

the upper limit, an approximation allowed again in the limit

of largeN.
Collecting everything, we get finally

(T ~toN* A =toNVx—D), (A1)

up to a constant prefactor, depending onlyxan
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